Applications of Fiber Optics Sensors in Seismology
Simulation Analysis of Fiber Optic Magnetic Sensor
Enhancement of excited-state emission of InAs/GaAs quantum dots with larg...
Self-Powered SnS1-xSex Alloy/Silicon Heterojunction Photodetectors with H...
Mode and lasing characteristics for scissor-FP hybrid-cavity semiconducto...
14 mu m quantum cascade lasers based on diagonal transition and nonresona...
Exploring the Designs of p-Type Piezoelectric FinFETs Based on NEGF Trans...
Insulator-metal transition and ultrafast crystallization of Ga40Sb60/Sn15...
Atomic mechanism of strong interactions at the graphene/sapphire interface
Self-catalyzed growth of GaSb nanowires for high performance ultraviolet-...

Adaptive Sample-Size Unscented Particle Filter with Partitioned Sampling for Three-Dimensional High-Maneuvering Target Tracking



Author(s): Deng, Q (Deng, Qi); Chen, G (Chen, Gang); Lu, HX (Lu, Huaxiang)

Source: APPLIED SCIENCES-BASEL Volume: 9 Issue: 20 DOI: 10.3390/app9204278 Published: OCT 2019

Abstract: High-maneuvering target tracking is a focused application area in radar positioning and military defense systems, especially in three-dimensional space. However, using a traditional motion model and techniques expanded from general two-dimensional maneuvering target tracking may be inaccurate and impractical in some mission-critical systems. This paper proposes an adaptive sample-size unscented particle filter with partitioned sampling (PS-AUPF), which is used to track a three-dimensional, high-maneuvering target, combined with the CS-jerk model. In PS-AUPF, the partitioned sampling is introduced to improve the resampling and predicting process by decomposing motion space. At the same time, the adaptive sample size strategy is used to adjust the sample size adaptively in the tracking process, according to the initial parameters and the estimated state variance of each time step. Finally, the effectiveness of this method is validated by simulations, in which the sample size of each algorithm is set to the minimum required for the optimal accuracy, thus ensuring the reliability of the tracking results. The results have shown that the proposed PS-AUPF, with higher accuracy and lower computational complexity, performs better than other existing tracking methods in three-dimensional high-maneuvering target tracking scenarios.

Accession Number: WOS:000496269400081

eISSN: 2076-3417

Full Text:


北京市海淀区清华东路甲35号 北京912信箱 (100083)




版权所有 ? e世博国际E世博怎么进不去了研究所

备案号:京ICP备05085259号 京公网安备110402500052 e世博国际E世博怎么进不去了所声明