Applications of Fiber Optics Sensors in Seismology
Simulation Analysis of Fiber Optic Magnetic Sensor
Enhancement of excited-state emission of InAs/GaAs quantum dots with larg...
Self-Powered SnS1-xSex Alloy/Silicon Heterojunction Photodetectors with H...
Mode and lasing characteristics for scissor-FP hybrid-cavity semiconducto...
14 mu m quantum cascade lasers based on diagonal transition and nonresona...
Exploring the Designs of p-Type Piezoelectric FinFETs Based on NEGF Trans...
Insulator-metal transition and ultrafast crystallization of Ga40Sb60/Sn15...
Atomic mechanism of strong interactions at the graphene/sapphire interface
Self-catalyzed growth of GaSb nanowires for high performance ultraviolet-...

High-Quality Hexagonal Nonlayered CdS Nanoplatelets for Low-Threshold Whispering-Gallery-Mode Lasing



Author(s): Mi, Y (Mi, Yang); Jin, B (Jin, Bao); Zhao, LY (Zhao, Liyun); Chen, J (Chen, Jie); Zhang, S (Zhang, Shuai); Shi, J (Shi, Jia); Zhong, YG (Zhong, Yangguang); Du, WN (Du, Wenna); Zhang, J (Zhang, Jun); Zhang, Q (Zhang, Qing); Zhai, TY (Zhai, Tianyou); Liu, XF (Liu, Xinfeng)

Source: SMALL Volume: 15 Issue: 35 Article Number: 1901364 DOI: 10.1002/smll.201901364 Published: AUG 2019

Abstract: Low threshold micro/nanolasers have attracted extensive attention for wide applications in high-density storage and optical communication. However, constrained by quantum efficiency and crystalline quality, conventional semiconductor small-sized lasers are still subjected to a high lasing threshold. In this work, a low-threshold planar laser based on high-quality single-crystalline hexagonal CdS nanoplatelets (NPLs) using a self-limited epitaxial growth method is demonstrated. The as-grown CdS NPLs show multiple whispering-gallery-mode lasing at room temperature with a threshold of approximate to 0.6 mu J cm(-2), which is the lowest value among reported CdS-based lasers. Through power-dependent lasing studies at 77 K, the lasing action is demonstrated to originate from a exciton-exciton scattering process. Furthermore, the edge length- and thickness-dependent lasing threshold studies reveal that the threshold is inversely proportional to the second power of lateral edge length while partially affected by vertical thickness, and the lasing modes can be sustained in NPLs as thin as 60 nm. The lowest threshold emerges with the thickness of approximate to 110 nm due to stronger energy confinement in the vertical Fabry-Perot cavity. The results not only open up a new avenue to fabricate nonlayered material-based coherent light sources, but also advocate the promise of nonlayered semiconductor materials for the development of novel optoelectronic devices.

Accession Number: WOS:000483593200011

PubMed ID: 31282127

ISSN: 1613-6810

eISSN: 1613-6829

Full Text:


北京市海淀区清华东路甲35号 北京912信箱 (100083)




版权所有 ? e世博国际E世博怎么进不去了研究所

备案号:京ICP备05085259号 京公网安备110402500052 e世博国际E世博怎么进不去了所声明